In Vitro Radiosensitizing Effects of Temozolomide on U87MG Cell Lines of Human Glioblastoma Multiforme
نویسندگان
چکیده
BACKGROUND Glioma is the most common primary brain tumor with poor prognosis. Temozolomide (TMZ) has been used with irradiation (IR) to treat gliomas. The aim of the present study was to evaluate the cytotoxic and radiosensitizing effect of TMZ when combined with high-dose and high-dose rate of gamma irradiation in vitro. METHODS Two 'U87MG' cell lines and skin fibroblast were cultured and assigned to five groups for 24, 48, and 72 hours. The groups were namely, TMZ group (2000 μM/L), IR group (5 Gy), TMZ plus IR group, control group, and control solvent group. MTT assay was applied to evaluate cell viability. Data were analyzed with SPSS 21.0 software using one-way ANOVA and Kruskal-Wallis test. P<0.05 were considered statistically significant. RESULTS The slope of growth curve U87MG cells in semi-logarithmic scale was equal to 27.36±0.89 hours. The viability of cells was determined for different TMZ and IR treatment groups. In terms of cell viability, there were no significant differences between the control and control solvent groups (P=0.35) and between treated group by IR (5 Gy) alone and TMZ (2000 µM/ml) alone (P=0.15). Data obtained for the cell viability of combined TMZ plus IR in both cell lines compared to TMZ or IR treated group alone showed a significant difference (P=0.002). CONCLUSION The evaluation of cells viability showed that TMZ in combination with IR on glioma cells led to a significant radiosensitivity compared to IR alone.
منابع مشابه
In Vitro Radiosensitizing Effects of Temozolomide on U87MG Cell Lines of Human Glioblastoma Multiforme
Background: Glioma is the most common primary brain tumor with poor prognosis. Temozolomide (TMZ) has been used with irradiation (IR) to treat gliomas. The aim of the present study was to evaluate the cytotoxic and radiosensitizing effect of TMZ when combined with high-dose and high-dose rate of gamma irradiation in vitro.Methods: Two ‘U87MG’ cell lines and skin fibroblast were cultured and ass...
متن کاملThymoquinone synergistically potentiates temozolomide cytotoxicity through the inhibition of autophagy in U87MG cell line
Objective(s): Glioblastoma multiforme (GBM) is one of the most lethal forms of human cancer and temozolomide (TMZ) is currently part of the standard treatment for this disease. Combination therapy using natural substances can enhance the anti-cancer activity of TMZ. The purpose of this study was to evaluate the effect of TMZ in combination with thymoquinone (TQ) on human GBM cell line (U87MG). ...
متن کاملCelecoxib enhances radiosensitivity of hypoxic glioblastoma cells through endoplasmic reticulum stress.
BACKGROUND Refractoriness of glioblastoma multiforme (GBM) largely depends on its radioresistance. We investigated the radiosensitizing effects of celecoxib on GBM cell lines under both normoxic and hypoxic conditions. METHODS Two human GBM cell lines, U87MG and U251MG, and a mouse GBM cell line, GL261, were treated with celecoxib or γ-irradiation either alone or in combination under normoxic...
متن کاملThe Synergistic Effect of Combination Progesterone and Temozolomide on Human Glioblastoma Cells
Glioblastoma multiforme (GBM) is the most common and most aggressive malignant brain tumor. Despite optimal treatment and evolving standard of care, the median survival of patients diagnosed with GBM is only 12-15 months. In this study, we combined progesterone (PROG) and temozolomide (TMZ), a standard chemotherapeutic agent for human GBM, to test whether PROG enhances the antitumor effects of ...
متن کاملMicroRNA-132 induces temozolomide resistance and promotes the formation of cancer stem cell phenotypes by targeting tumor suppressor candidate 3 in glioblastoma
The prognosis of patients suffering from glioblastoma [also referred to as glioblastoma multiforme (GBM)] is dismal despite multimodal therapy. Chemotherapy with temozolomide may suppress tumor growth for a certain period of time (a few months); however, invariable tumor recurrence suggests that glioblastoma initiating cells (GICs) render these tumors persistant. Thus, the understanding of the ...
متن کامل